
B+Tree Concurrency Control

Yundi Bao, yundib
Yingqi Zhang, yingqizh

Link
https://t7nirvana.github.io/Concurrent-BPlusTree/

Summary
We are going to implement a few versions of B+Tree that can handle concurrent requests on a
multi-core CPU platform, including locks in different granularities and a lock-free
implementation. We will run benchmarks and compare their performance.

Background
B+Tree is a classic data structure used in database systems for indexes. It stores values in leaf
nodes and uses internal nodes to find and direct requests to the right leaf nodes. The tree
structure makes all search, insertion and deletion O(log n). In many cases there are also
pointers between leaf nodes to make sequential scan possible. In order to benefit from the
O(log n) operations, B+Tree has to split/merge to be balanced, which involves modifying
multiple nodes.

Database systems, especially OLTP systems, need to accommodate heavy workloads and
therefore B+Tree should be able to handle concurrent requests. Due to the complexity of split,
merge and sequential scan, locking can be tricky and may not lead to optimal performance.

We propose three versions of concurrency mechanism:
1. A coarse-grained lock-based implementation that maintains a global lock for the entire

tree. We can use a rw-lock(lock with shared and exclusive modes) to gain some level of
concurrency.

2. A fine-grained lock-based implementation that maintains locks for each node. Each
request only holds lock when necessary and releases it immediately when traversing
further down the tree. So ideally a read request should hold at most 2 locks at a given
time and a write request can hold locks along the path depending on whether it may
modify the nodes.

3. A lock-free implementation that handles requests in batches. A batch of requests are
assigned to worker threads who then work in phases: identifying dependencies and
re-balancing requests, modifying leaf nodes, modifying internal nodes level by level.

The Challenge
The lock-free implementation would be the most challenging part of the project. Since the
original requests are in a specific order and they may depend on each other, we have to
distribute the requests to balance the workload and at the same time preserve that order within
nodes. We also need multiple barriers while handling the batch of requests since we need to



modify a level of the tree at a time. The tree structure inherently leads to ideal workers when
handling upper levels of the tree.

Another challenge is implementing sequential scans. In the fine-grained lock version, we have
to handle it carefully to avoid deadlock since two requests may traverse leaf nodes in opposite
directions(like “search key > 1” and “search key < 10”).  In the lock-free version, we have to
decide whether to let one worker do the entire scan or pass it to another worker when the scan
exceeds its nodes boundary. The first choice may lead to imbalance load and bad cache locality
while the second choice may involve communication and computation overheads.

We also want to evaluate the performance of each version in a reasonable way, so we need
some benchmark that can really reflect the real world access patterns. Also, we may need to
somehow simulate the latency from disk io as well.

Resources
We will first implement our own B+Tree data structure since this is straightforward. For the
lock-based implementation, we will follow the idea covered in the 15-645 lecture and explore
detailed design choices. We will make our own correctness tests for development. The idea of
the lock-free implementation is proposed in the paper “PALM: Parallel Architecture-Friendly
Latch-Free-Modifications to B+ Trees on Many-Core Processors” where they even implemented
latency hiding and utilized SIMD execution. We will first replicate the basic implementation and
then see if we can make further optimization. We found some great benchmarks from yahoo in
the paper “Benchmarking Cloud Serving Systems with YCSB” and we will use some of them to
evaluate our implementations.

Goals and Deliverables
PLAN TO ACHIEVE

● The B+Tree implementation with Search(), Insert(), Delete(), Scan() and split/merge
functionality

● The three versions of concurrent B+Tree that support Search(), Insert(), Delete() and
split/merge functionality

● The evaluation by running benchmarks and analyze the results

HOPE TO ACHIEVE
● Supporting Scan() in the two lock-based versions
● Supporting Scan() in the lock-free version
● Utilizing SIMD execution and hiding latencies in the lock-free version

We hope our lock-free version(without SIMD or latency hiding) can have linear speedup, though
the factor may be smaller than 1 since we can hardly fully utilize workers in the tree structure. It
should be at least significantly faster than the fine-grained lock-based implementation,
especially when we have large trees and more dependent requests.

https://dl.acm.org/doi/10.14778/3402707.3402719
https://dl.acm.org/doi/10.14778/3402707.3402719
https://dl.acm.org/doi/10.1145/1807128.1807152


Our eventual deliverables that we will show at the poster session will be the speedup graphs of
our implementations. We will also make descriptive figures to illustrate our implementations and
the characteristics of the benchmarks we run.

Platform Choice
We will implement our concurrent B+Trees in C++. C++ has its own pthread library and we can
easily include other languages that have richer parallelism models like OpenML, ISPC if we see
necessity. We will run our benchmarks on ghc machines first and may move to psc machines if
more concurrency is needed.

Schedule

Week Task Status

11.1 - 11.7 Proposal, Background Research

11.8 - 11.14 B+Tree, Lock-based Implementations

11.15 - 11.21 Lock-free Implementation

Milestone

11.22 - 11.28 Benchmark, Evaluation, and Extra Feature if possible

11.29 - 12.5 Final Measurement and Report

12.6 - 12.10 Poster


